Sigma Notation and Properties
- Calculate the common difference of the series.
- Find the set of possible values of n.
The third term of an arithmetic series is 70 and the sum of the first 10 terms of the series is 450.
The sum of the first n terms of the series is Sn.
Given that Sn⩾
Solution:Let the first term be a and the common difference be d. The third term: \d{a + 2d = 70} \quad\ldots (1) The sum of the first 10 terms: S_{10} = 450 \d \frac{10}{2}\times (2a + 9d) = 450 2a + 9d = 90 \quad\ldots (2) From (1): a = 70 - 2d Substitute a in (2): 2(70 - 2d) + 9d = 90 140 - 4d + 9d = 90 5d = -50 \Rightarrow d = -10 \therefore\quad a = 70 - 2(-10) = 90 For part (b), \d S_n = \frac{n}{2} \times (2a + (n-1)d) \geqslant 350 Substitute a=90 and d = -10: \d{\frac{n}{2} \times (180 - 10n + 10) \geq 350} \d{\frac{n}{2} \times (190 - 10n) \geq 350} n(190 - 10n) \geq 700 190n - 10n^2 \geq 700 10n^2 - 190n + 700 \leq 0 n^2 - 19n + 70 \leq 0 (n-5)(n-14)\leq 0 5\leq n \leq 14 n\in\{5, 6, 7, 8, 9, 10, 11, 12, 13, 14\} |
The sum of the first and third terms of a geometric series is 100.
The sum of the second and third terms is 60.
- Find the two possible values of the common ratio of the series.
- the first term of the series,
- the least number of terms for which the sum is greater than 159.9.
Given that the series is convergent, find
Solution:Let the first term be a and the common ratio be r. The first term: a The second term: ar The third term: ar^2 Given: a + ar^2 = 100 \quad\ldots (1) \d ar + ar^2 = 60 \quad\ldots (2) Dividing equation (1) by (2), \begin{aligned} & \frac{a+a r^2}{a r+a r^2}=\frac{100}{60} \\ & \frac{1+r^2}{r+r^2}=\frac{5}{3} \\ & 5 r+5 r^2=3+3 r^2 \\ & 2 r^2+5 r-3=0 \\ & (2 r-1)(r+3)=0 \\ & r=\frac{1}{2} \text { or } r=-3 \end{aligned} Only \d r = \frac{1}{2} is valid for a convergent series. For part (b), \begin{aligned} & a+a\left(\frac{1}{2}\right)^2=100 \\ & \frac{5}{4} a=100 \\ & a=80 \end{aligned} For part (c), \d S_n = \frac{a(1 - r^n)}{1 - r} > 159.9: \d S_n = \frac{80(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} > 159.9 \d 1-\left(\frac{1}{2}\right)^n>\frac{159.9}{160} \d \left(\frac{1}{2}\right)^n < \frac{1}{1600} \d \left(2\right)^n >1600 \d n >\log_2 1600\Rightarrow n=11 |
- the common ratio of G.
- the value of S.
- Write down the common ratio of H.
- Find the least value of n for which S_{n}>S.
The sum of the first and third terms of a geometric series G is 104.
The sum of the second and third terms of G is 24.
Given that G is convergent and that the sum to infinity is S, find
The sum of the first and third terms of another geometric series H is also 104 and the sum of the second and third terms of H is 24.
The sum of the first n terms of H is S_{n}.
Solution:Let the first term be a and the common ratio be r. The first term: a The second term: ar The third term: ar^2 \begin{aligned} & a+a r^2=104 \quad\ldots (1) \\ & a+a r=24 \quad\ldots (2) \\ & (1) \div(2) \\ & \frac{a+a r^2}{a+a r}=\frac{104}{24} \\ & \frac{1+r^2}{1+r}=\frac{13}{3} \\ & 3 r^2+3=13+13 r \\ & 3 r^2-13 r-10=0 \\ & (3 r+2)(r-5)=0 \\ & r=-\frac{2}{3} \text { or } r=5 \end{aligned} Only \d r = -\frac{21}{3} is valid for a convergent series. (b) Substituting \d r=-\frac{2}{3} in equation (2), \begin{aligned} & a+a\left(-\frac{2}{3}\right)=2 y \\ & \frac{a}{3}=2 y \Rightarrow a=72 .\\ S & =\frac{72}{1-\left(-\frac{2}{3}\right)} \\ & =\frac{72}{\frac{5}{3}} \\ & =\frac{216}{5} \end{aligned} (c) According to the part (a) the common ratio of H is 5. (d) \begin{aligned} & a+5(a)=24 \\ & 6 a=24 \Rightarrow a=4 \\ & S_n=\frac{4\left(5^n-1\right)}{5-1}=5^n-1 \\ & S_n>S \\ & 5^n-1>\frac{216}{5} \\ & 5^n>\frac{221}{5} \\ & n>\log _5 \frac{221}{5} \\ & n>2.35 \\ & n=3 \end{aligned} |
Evaluate \d \sum_{n=6}^{20}(2n-3)
Solution:\begin{aligned} \sum_{n=6}^{20}(2n-3) &= (2 \cdot 6 - 3) + (2 \cdot 7 - 3) + ... + (2 \cdot 20 - 3)\\ &= (12 - 3) + (14 - 3) + ... + (40 - 3)\\ &= 9 + 11 + 13 + ... + 37 \end {aligned} This is an arithmetic series with first term 9, last term 37, and common difference 2. Number of terms: \d n = \frac{37 - 9}{2} + 1 = 15 Sum: \d S = \frac{15}{2} \cdot (9 + 37) = 345 |
- Write down an expression for the r th term of S.
- Find an expression for the common difference of S.
- Show that S_{n}=\frac{1}{2} n(n+1) \log_{a} 2.
- Find T_{n}-S_{n} and simplify your answer.
The first four terms of an arithmetic series, S, are
\log_{a} 2+\log_{a} 4+\log_{a} 8+\log_{a} 16
The sum of the first n terms of S is S_{n}.
The first four terms of a second arithmetic series, T, are
\log_{a} 6+\log_{a} 12+\log_{a} 24+\log_{a} 48
The sum of the first n terms of T is T_{n}.
Solution:(a) the rth term of S is \log_{a} (2^r) = r \log_{a} 2. (b) the common difference of S is \log_{a} 4 - \log_{a} 2 = 2 \log_{a} 2 - \log_{a} 2 = \log_{a} 2. (c) \begin{aligned} S_n & =\frac{n}{2}\left[2 \log _a 2+(n-1) \log _a 2\right] \\ & =\frac{n}{2}[2+n-1] \log _a 2 \\ & =\frac{1}{2} n(n+1) \log _a 2 \end{aligned} (d) the first four terms of T are \log_{a} 6 + \log_{a} 12 + \log_{a} 24 + \log_{a} 48. \begin{aligned} u_1 & =\log _a^b \\ u_2 & =\log _a 12=\log _a(6 \times 2) \\ u_3 & =\log _a 24=\log _a\left(6 \times 2^2\right) \\ u_4 & =\log _a 48=\log _a\left(6 \times 2^3\right) \\ u_r & =\log _a\left(6.2^{r-1}\right) \\ & =\log _a 6+\log _a 2^{r-1} \end{aligned} \begin{aligned} T_n & =\sum_{r=1}^n u_r \\ & =\sum_{r=1}^n\left(\log _a^6+\log _a 2^{r-1}\right) \\ & =\sum_{r=1}^n \log _a 6+\sum_{r=1}^n \log _a 2^{r-1} \\ & =\sum_{r=1}^n \log _a 6+\sum_{r=1}^n(r-1) \log _a 2 \\ & =\sum_a^n \log _a 6+\sum_{r=1}^n r \log _a 2-\sum_{r=1}^n\log _a 2 \\ & =n \log _a 6+\frac{1}{2} n(n+1) \log _a 2-n \log _a 2\\ & =n \left(\log _a 6- \log _a 2\right)+\frac{1}{2} n(n+1) \log _a 2\\ & =n \log _a \frac{6}{2}+\frac{1}{2} n(n+1) \log _a 2\\ & =n \log _a 3+\frac{1}{2} n(n+1) \log _a 2 \end{aligned} \therefore\quad T_n-S_n=n \log _a 3 |
- (i) Find the exact value of the common ratio of S.
- (i) Explain why the series is convergent.
The first term of a geometric series S is \sqrt{2}.
The second term of S is \sqrt{2}-2.
(ii) Find the third term of S, giving your answer in the form a \sqrt{2}+b, where a and b are integers.
(ii) Find the sum to infinity of S.
Solution:(a)(i) Let the first term be a and the common ratio be r \begin{aligned} \therefore \quad a & =\sqrt{2} \\ a r & =\sqrt{2}-2 \\ \therefore \quad r & =\frac{\sqrt{2}-2}{\sqrt{2}}\\ \therefore\quad r&=1-\sqrt{2} \end{aligned} (ii) \begin{aligned} \text { third term }& =ar^2 \\ & =(\sqrt{2}-2)(1-\sqrt{2}) \\ & =\sqrt{2}-2-2+2 \sqrt{2} \\ & =3 \sqrt{2}-4 \end{aligned} (b) \begin{aligned} & r=1-\sqrt{2}=-0.414 \\ & |r|=0.414<1 \end{aligned} (i) Hence the series a convergent. (ii) Sum to infinity \d =\frac{\sqrt{2}}{1-(1-\sqrt{2})}=1 |
- Show that \d\sum_{r=1}^{n}(3 r-4)=\frac{n}{2}(3 n-5).
- Hence, or otherwise, evaluate \d\sum_{r=11}^{50}(3 r-4).
- find the value of n.
Given that \d \sum_{r=1}^{n}(3 r-4)=186,
Solution:Method 1 \begin{aligned} \sum_{r=1}^n(3 r-4) & =(3-4)+(6-4)+(9-4)+\cdots+(3 n-4) \\ & =-1+2+5+\cdots+(3 n-4) \\ & =\frac{n}{2}(-1+3 n-4) \\ & =\frac{n}{2}(3 n-5) \end{aligned} Method 2 \begin{aligned} \sum_{r=1}^n(3 r-4) & =\sum_{r=1}^n 3 r-\sum_{r=1}^n 4 \\ & =\frac{3 n}{2}(n+1)-4 n \\ & =\frac{n}{2}(3 n+3)-\frac{n}{2}(8) \\ & =\frac{n}{2}(3 n+3-8) \\ & =\frac{n}{2}(3 n-5) \end{aligned} (b) \begin{aligned} \sum_{r=11}^{50}(3 r-4) & =\sum_{r=1}^{50}(3 r-4)-\sum_{r=1}^{10}(3 r-4) \\ & =\frac{50}{2}(3 \times 50-5)-\frac{10}{2}(3 \times 10-5) \\ & =25(145)-5(25) \\ & =25 \times 140 \\ & =3500 \end{aligned} (c) \begin{aligned} & \sum_{r=1}^n(3 r-4)=186 \\ & \frac{n}{2}(3 n-5)=18-6 \\ & 3 n^2-5 n-372=0 \\ & (3 n+31)(n-12)=0\\ \therefore\quad & n=12\quad (\because n \text{ is a positive integer}) \end{aligned} |
The sum S_{n} of the first n terms of an arithmetic series is given by S_{n}=n(2 n+3). The first term of the series is a.
- Show that a=5.
- Find the common difference of the series.
- Find the 12th term of the series.
- find the value of p.
Given that 1+S_{p+4}=2 S_{p},
Solution:(a) \begin{aligned} S_n & =n(2 n+3) \\ 4 & =S_1=1(2 \times 1+3)=5 \\ \therefore\quad a & =5 \end{aligned} (b) Let the common difference be d. \begin{aligned} & S_2=2(2 \times 2+3) \\ & u_1+u_2=14 \\ & a+a+d=14 \\ & 10+d=14 \\ & d=4 . \end{aligned} (c) u_{12}=a+11 d=49 (d) \begin{aligned} & 1+S_{p+4}=2S_p \\ & 1+(p+4)(2(p+4)+3)=2 p(2 p+3) \\ & 1+(p+4)(2 p+11)=4 p^2+6 p \\ & 2 p^2+19 p+45=4 p^2+6 p \\ & 2 p^2-13 p-45=0 \\ & (2 p+5)(p-9)=0 \\ & p=-\frac{5}{2}, p=9 \end{aligned} Since p is a positive integer, The valid solution is p=9. |
- Write down an expression in terms of a and d for
- show that \d d=-\frac{4}{7} a,
- show that t_{176}=S_{21},
- find the value of r when t_{r}=5 t_{9}.
An arithmetic series has first term a and common difference d. The nth term of the series is t_{n} and the sum of the first n terms of the series is S_{n}.
(i) t_{58}, (ii) S_{13}.
Given that t_{58}=S_{13},
Solution:(a) (i) \begin{aligned} t_{58} & =a+57 d \\ \text { (ii) } S_{13} & =\frac{13}{2}(2 a+12 d)=13 a+78 d \\ \text { (b) } t_{58} & =S_{13} \\ a+5-7 d & =13 a+78 d \\ 21 d & =-12 a \\ d & =-\frac{4}{7} a \end{aligned} (c) \begin{aligned} t_{176} & =a+175 d \\ & =a+175\left(-\frac{4}{7} a\right) \\ & =-99 a\\ S_{21} & =\frac{21}{2}(2 a+20 d) \\ & =21\left[a+10\left(-\frac{4}{7} a\right)\right] \\ & =21 a-120 a \\ & =-99 a \\ \therefore \quad t_{176} & =S_{21} \end{aligned} (d) \begin{aligned} & t_r=5 t_9 \\ & a+(r-1) d=5(a+8 d) \\ & a+(r-1)\left(-\frac{4}{7} a\right)=5\left(a+8\left(-\frac{4}{7} a\right)\right) \\ & 1-\frac{4 r}{7}+\frac{4}{7}=5-\frac{160}{7} \\ & r=34 \end{aligned} |