Processing math: 73%

Exercise (6.3) - Solutions, Modulus Equations

Keys to determine solutions of the equation |xp|=q


  • When q<0,|xp|=q has no solution.

  • When q=0,|xp|=0 has only one solution p.

  • When q>0, the equation |xp|=q can be seen xp=q or xp=qx=p+q or x=pq

Exercise (6.3)

  1. Find the solutions of the following equations. Illustrate each of the equations on the number line.

    (a) |x5|=3

    (b) |x+3|=2

    (c) |x4|=1


    (a) |x5|=3      x5=3  or  x5=3      x=2  or  x=8

    (b)  |x+3|=2      x+3=2  or  x+3=2      x=5  or  x=1

    (c)  |x4|=1      x4=1  or  x4=1      x=3  or  x=5


  2. Find the solutions of the following equations.

    (a) |2x5|=4

    (b) |2x4|=3

    (c) |5x+10|=2


    (a)  |2x5|=4      2x5=4  or  2x5=4      2x=1  or  2x=9      x=12  or  x=92(b)  |2x4|=3      2x4=3  or  2x4=3      2x=1  or  2x=7      x=12  or  x=72(c)  |5x+10|=2      5x+10=2  or  5x+10=2      5x=12  or  5x=8      x=125  or  x=85

  3. Solve the following equations.

    (a) 3|x4|4=8

    (b) 2|x5|+3=9

    (c) |23x4|+11=3


    (a)    3|x4|4=8        3|x4|=12        |x4|=4        x4=4or x4=4        x=0or x=8(b)    2|x5|+3=9        2|x5|=6        |x5|=3        x5=3 or x5=3        x=2or x=8(c)    |23x4|+11=3        |23x4|=8<0        

  4. Solve the following equations.

    (a) |5x−1|=|2x+3|

    (b) |7x−3|=|3x+7|

    (c) |6x−5|=|3x+4|


    \begin{array}{l}(\text{a})\ \ \ \ \left| {5x-1} \right|=\left| {2x+3} \right|\\\\\ \ \ \ \ \ \ \ 5x-1=-\ (2x+3)\text{ or }\quad 5x-1=2x+3\\\\\ \ \ \ \ \ \ \ 5x-1=-2x-3\quad \text{ or }\quad 5x-1=2x+3\\\\\ \ \ \ \ \ \ \ 7x=-2\quad \text{or }\quad 3x=4\\\\\ \ \ \ \ \ \ \ x=-\displaystyle\frac{2}{7}\quad \text{or }\quad x=\displaystyle\frac{4}{3}\\\\(\text{b})\ \ \ \ \left| {7x-3} \right|=\left| {3x+7} \right|\\\\\ \ \ \ \ \ \ \ 7x-3=-\ (3x+7)\text{ or }\quad 7x-3=3x+7\\\\\ \ \ \ \ \ \ \ 7x-3=-3x-7\quad \text{ or }\quad 7x-3=3x+7\\\\\ \ \ \ \ \ \ \ 10x=-4\quad \text{or }\quad 4x=10\\\\\ \ \ \ \ \ \ \ x=-\displaystyle\frac{2}{5}\quad \text{or }\quad x=\displaystyle\frac{5}{2}\\\\(\text{c})\ \ \ \ \left| {6x-5} \right|=\left| {3x+4} \right|\\\\\ \ \ \ \ \ \ \ 6x-5=-\ (3x+4)\text{ or }\quad 6x-5=3x+4\\\\\ \ \ \ \ \ \ \ 6x-5=-3x-4\quad \text{ or }\quad 6x-5=3x+4\\\\\ \ \ \ \ \ \ \ 9x=1\quad \text{or }\quad 3x=9\\\\\ \ \ \ \ \ \ \ x=\displaystyle\frac{1}{9}\quad \text{or }\quad x=3\end{array}

No (3) နှင့် No (4) သည် ပြဌာန်းချက်တွင် မပါဝင်ပါ။ ထပ်တိုးလေ့ကျင့်နိုင်ရန် ပေါင်းထည့်ပေးခြင်း ဖြစ်ပါသည်။

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم