Keys to determine solutions of the equation $|x-p|=q$
- When $q<0,|x-p|=q$ has no solution.
- When $q=0,|x-p|=0$ has only one solution $p$.
- When $q>0$, the equation $|x-p|=q$ can be seen $x-p=q$ or $x-p=-q \Rightarrow x=p+q$ or $x=p-q$
Exercise (6.3)
- Find the solutions of the following equations. Illustrate each of the equations on the number line.
(a) $|x-5|=3$
(b) $|x+3|=2$
(c) $|x-4|=1$ - Find the solutions of the following equations.
(a) $|2 x-5|=4$
(b) $|-2 x-4|=3$
(c) $|5 x+10|=2$
- Solve the following equations.
(a) $3|x−4|-4=8$
(b) $2|x−5|+3=9$
(c) $ \left| {\displaystyle\frac{2}{3}x-4} \right|+11=3$ - Solve the following equations.
(a) $|5x−1|=|2x+3|$
(b) $|7x−3|=|3x+7|$
(c) $|6x−5|=|3x+4|$
No (3) နှင့် No (4) သည် ပြဌာန်းချက်တွင် မပါဝင်ပါ။ ထပ်တိုးလေ့ကျင့်နိုင်ရန် ပေါင်းထည့်ပေးခြင်း ဖြစ်ပါသည်။
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!