Loading [MathJax]/jax/output/HTML-CSS/jax.js

Geometric Progression : Problem and Solutions


1.        If a,b,c,d are in G.P., prove that a+b,b+c,c+d are also in G.P.

Show/Hide Solution
a,b,c,d are in G.P.

Let r be the common ratio.

 a=a, b=ar, c=ar2, d=ar3 b+ca+b=ar+ar2a+ar b+ca+b=r(ar+ar)a+ar b+ca+b=rAgain,   c+db+c=ar2+ar3ar+ar2 c+db+c=r(ar+ar2)ar+ar2 c+db+c=rb+ca+b=c+db+c

 a+b,b+c,c+d are also in G.P.

2.         Find three numbers in G.P. whose sum is 13 and the sum of whose squares is 91.

Show/Hide Solution
Let the three numbers in G.P. be a,ar,ar2

By the problem,

a+ar+ar2=13

a(1+r+r2)=13(1)

a2+(ar)2+(ar2)2=91

 a2+a2r2+a2r4=91

 a2(1+r2+r4)=91(2)

Squaring both sides of equation (1),

a2(1+r+r2)2=169

a2(1+2r+3r2+2r3+r4)=169

a2[1+2r+3r2+2r3+r4]=169a2[1+r2+r4+2r+2r2+2r3]=169a2[(1+r2+r4)+2r(1+r+r2)]=169a2(1+r2+r4)+2ra2(1+r+r2)=16991+2ar13=16926ar=78ar=3a=3r

Substituting a=3r in equation (1),

  3r(1+r+r2)=133+3r+3r2=13r3r210r+3=0(3r1)(r3)=0

r=13 (or) r=3.

When r=13,a=9.

Therefore the numbers are 9, 3 and 1.

When r=3,a=1.

Therefore the numbers are 1, 3 and 9.


3.        The product of three consecutive terms of a G.P. is 8. The sum of product of these terms taken in pairs is 14. Find the numbers.

Show/Hide Solution
Let the three consecutive terms in G.P. be ar,a,ar

By the problem,

araar=8

   araar=8 a3=8 a=2  Again,  ara+aar+ara=14a2r+a2r+a2=14a2(1r+r+1)=144(1r+r+1)=141r+r+1=722+2r2+2r=7r2r25r+2=0(2r1)(r2)=0 r=12 (or) r=2

Therefore the numbers are 4, 2 , 1 or 1, 2, 4.

4.         The sum of two positive numbers is 6 times their geometric mean. Show that the numbers are in the ratio (3+22):(322).

Show/Hide Solution
Let the two positive numbers be a and b.

G.M. between a and b. = ab

By the problem,

   a+b=6ab a2+2ab+b2=36ab a2+b2=34ab a2+b2ab=34 ab+ba=34Let ab=x.ba=1xx+1x=34x234x+1=0x234x=1x234x+289=288(x17)2=288x17=122x=17+122x=9+122+8x=32+2(3)(22)+(22)2x=(3+22)2x=(3+22)298x=(3+22)232(22)2x=(3+22)(3+22)(3+22)(322)x=3+22322ab=3+22322

5.         The sum of an infinite G.P is 57 and the sum of their cubes is 9747, find the fourth term.

Show/Hide Solution
Let the first term be a and the common ratio be r.

Given G.P is a,ar,ar2,...

Let sum to infinity be S.

S=57

Since S=a1r,

a1r=57(1)

When each terms are cubed, given G.P becomes ...

a3,a3r3,a3r6,...

It is also a G.P with the first term a3 and the common ratio r3.

Let the sum to infinity of that G.P be S

S=9747

Since S=a31r3,

a31r3=9747(2)

Cubing equation (1) on both sides,

   a3(1r)3=573(3)

Dividing equation (3) by equation (2),

   a3(1r)3a31r3=5739747  a3(1r)3×1r3a3=19  (1r)(1+r+r2)(1r)(12r+r2)=19  1+r+r212r+r2=19  1+r+r2=1938r+19r2  18r239r+18=0  6r213r+6=0  (3r2)(2r3)=0  r=23 (or) r=32

Since the sum to infinity exists, |r|<1.

  r=23  a123=57  a=19  u4=ar3  u4=19×827  u4=15227

6.         The sum of an infinite G.P is x and the sum of their squares is y, find the common ratio of that G.P in terms of x and y.

Show/Hide Solution
Let the first term be a and the common ratio be r.

Given G.P is a,ar,ar2,...

By the problem, the sum to infinity of the progression is x.

  a1r=x

  a=x(1r)

When each terms are squared, given G.P becomes,

a2,a2r2,a2r4,...

It is also a G.P with the first term a2 and the common ratio r2.

By the problem, the sum to infinity of above G.P is y.

  a21r2=y  a1r×a1+r=y  x×a1+r=y  x×x(1r)1+r=y  1+r1r=x2y  (1+r)+(1r)(1+r)(1r)=x2+yx2y    [ componendo and dividendo]  22r=x2+yx2y  r=x2yx2+y

7.         Given that a,b,c are in A.P. and a2,b2,c2 are in G.P. If a<b<c and a+b+c=32, Find the value of a,b and c.

Show/Hide Solution
a,b,c are in A.P. (given)

Let the common difference be d where d0.

 a=bd and c=b+d

By the problem,

    a+b+c=32  bd+b+b+d=32  3b=32  b=12 a=b12 and c=b+12

a2,b2,c2 are in G.P. (given)

 (12d)2,14,(12+d)2 are in G.P.

14(12d)2=(12+d)214(14d2)2=11614d2=14 (or)14d2=14d2=0 (or) d2=12

But d2=0 is impossible,

 d2=12 d=±12

Since a<b<c, d=12

  a=1212    b=12    c=12+12

8.         Find the sum to infinity of the series 1+23+432+1033+1434+...

Show/Hide Solution
Let S=1+23+432+1033+1434+...(1)

13S=13+232+433+1034+1436+... (2)

By equation (1) - equation (2)

    S13S=1+13+432+433+434+436+...  S(113)=43+432(1+13+132+133+...)  23S=43+432(1113)  23S=43+432×32  23S=2  S=3

9.         If the (p+q)th term of a G.P is m and the (pq)th term is n, find the pth term in terms of m and n.

Show/Hide Solution
Let the first term of the G.P be a and the common ratio be r.

By the problem,

   up+q=m  arp+q1=m   upq=n  arpq1=n arp+q1×arpq1=mn a2r2p2=mn (arp1)2=mn arp1=mn up=mn

10.      If x>1 and log2x, log3x, logx16 are in G.P., find the value of x.

Show/Hide Solution
log3x, logx16 are in G.P..

    log3xlog2x=logx16log3x    (log3x)2=log2xlogx16    (log3x)2=logx16logx2 [logba=1logab]    (log3x)2=log216 [logbxlogby=logyx]    (log3x)2=log224    (log3x)2=4    log3x=±2   x=32 (or) x=32   x=9 (or) x=19

Since x>1, x=19 is impossible.

   x=9

11.     How many terms of the sesies 3+3+33+... gives the sum 39+133.

Show/Hide Solution
Given series : 3+3+33+...

33=3333=3}yields common ratio

     Given terms are in G.P. with a=3 and d=3.

By the problem,

    Sn=39+133  a(rn1)r1=39+133  3((3)n1)31=133(3+1)  3((3)n1)=133(3+1)(31)  (3)n1=13(31)  (3)n=27  (3)n= (3)6  n=6

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم