1. Prove that tan(A+B)cot(A−B)=sin2A−sin2Bcos2A−sin2B.
Show/Hide Solution
Solution tan(A+B)cot(A−B)=tan(A+B)tan(A−B) =sin(A+B)cos(A+B)sin(A−B)cos(A−B) =sinAcosB+cosAsinBcosAcosB−sinAsinB×sinAcosB−cosAsinBcosAcosB+sinAsinB =sin2Acos2B−cos2Asin2Bcos2Acos2B−sin2Asin2B =sin2A(1−sin2B)−(1−sin2A)sin2Bcos2A(1−sin2B)−(1−cos2A)sin2B =sin2A−sin2Asin2B−sin2B+sin2Asin2Bcos2A−cos2Asin2B−sin2B+cos2Asin2B =sin2A−sin2Bcos2A−sin2B |
2. Prove that cos2θsinθ+sin2θcosθ=cosecθ
Show/Hide Solution
Solution cos2θsinθ+sin2θcosθ= cos2θcosθsinθcosθ+sin2θsinθsinθcosθ= cos2θcosθ+sin2θsinθsinθcosθ= cos2θcosθ+sin2θsinθsinθcosθ= cos(2θ−θ)sinθcosθ= cosθsinθcosθ= 1sinθ= cosecθ |
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!