Loading [MathJax]/jax/output/HTML-CSS/jax.js

Problem Study : Trigonometric Identity



1.          Prove that tan(A+B)cot(AB)=sin2Asin2Bcos2Asin2B.

Show/Hide Solution
Solution

tan(A+B)cot(AB)=tan(A+B)tan(AB)

                      =sin(A+B)cos(A+B)sin(AB)cos(AB)

                      =sinAcosB+cosAsinBcosAcosBsinAsinB×sinAcosBcosAsinBcosAcosB+sinAsinB

                      =sin2Acos2Bcos2Asin2Bcos2Acos2Bsin2Asin2B

                      =sin2A(1sin2B)(1sin2A)sin2Bcos2A(1sin2B)(1cos2A)sin2B

                      =sin2Asin2Asin2Bsin2B+sin2Asin2Bcos2Acos2Asin2Bsin2B+cos2Asin2B

                      =sin2Asin2Bcos2Asin2B

2.           Prove that cos2θsinθ+sin2θcosθ=cosecθ

Show/Hide Solution
Solution

        cos2θsinθ+sin2θcosθ=   cos2θcosθsinθcosθ+sin2θsinθsinθcosθ=   cos2θcosθ+sin2θsinθsinθcosθ=   cos2θcosθ+sin2θsinθsinθcosθ=   cos(2θθ)sinθcosθ=   cosθsinθcosθ=   1sinθ=   cosecθ

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم