Exponential နဲ႔ Logarithmic Function ေတြကို differentiate လုပ္ရင္ ေအာက္ပါ Formula ေတြ သိထားဖို႔ လိုပါတယ္။
(1) ddx(ax)=ax⋅lna, where a>0 and a≠1.(2) ddx(ex)=ex(3) ddx(logbx)=1xlogbe(4) ddx(lnx)=1x |
ဒါ့အျပင္ logarithm ရဲ့ basic rule တစ္ခ်ိဳ႕ျဖစ္တယ္ ေအာက္ပါ ဥပေဒသေတြကိုလည္း သိထားရပါမယ္။
(1) logbbx=x(2) logbax=xlogba(3) logb(xy)=logbx+logby(4) logb(xy)=logbx−logby |
Question : If y=xx, prove that d2ydx2−1y(dydx)2−yx=0.
Solution
y=xx∴
\displaystyle \operatorname{Differentiate \ with \ respect \ to \ x}
\displaystyle \ \ \frac{1}{y}\ \frac{{dy}}{{dx}}=x\frac{d}{{dx}}(\ln x)+\ln x\frac{d}{{dx}}(x)
\displaystyle \ \ \frac{1}{y}\ \frac{{dy}}{{dx}}=x\cdot \frac{1}{x}+\ln x(1)
\displaystyle \frac{1}{y}\ \frac{{dy}}{{dx}}=1+\ln x
\displaystyle \operatorname{Differentiate \ again \ with \ respect \ to \ x}
\displaystyle \ \ \frac{1}{y}\cdot \frac{d}{{dx}}\left( {\frac{{dy}}{{dx}}} \right)+\frac{{dy}}{{dx}}\cdot \frac{d}{{dx}}\left( {\frac{1}{y}} \right)=\frac{d}{{dx}}(1)+\frac{d}{{dx}}\left( {\ln x} \right)
\displaystyle \ \ \frac{1}{y}\frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}-\frac{1}{{{{y}^{2}}}}{{\left( {\frac{{dy}}{{dx}}} \right)}^{2}}=0+\frac{1}{x}
\displaystyle \ \ \frac{1}{y}\frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}-\frac{1}{{{{y}^{2}}}}{{\left( {\frac{{dy}}{{dx}}} \right)}^{2}}=\frac{1}{x}
\displaystyle \operatorname{Multiplying \ both \ sides \ with \ y,}
\displaystyle \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}-\frac{1}{y}{{\left( {\frac{{dy}}{{dx}}} \right)}^{2}}=\frac{y}{x}
\displaystyle \therefore \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}-\frac{1}{y}{{\left( {\frac{{dy}}{{dx}}} \right)}^{2}}-\frac{y}{x}=0
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!