Processing math: 25%

Problem Study : Deravitive of Exponential and Logarithmic Function



Exponential နဲ႔ Logarithmic Function ေတြကို differentiate လုပ္ရင္ ေအာက္ပါ Formula ေတြ သိထားဖို႔ လိုပါတယ္။

(1) ddx(ax)=axlna,      where a>0 and a1.(2) ddx(ex)=ex(3) ddx(logbx)=1xlogbe(4) ddx(lnx)=1x

ဒါ့အျပင္ logarithm ရဲ့ basic rule တစ္ခ်ိဳ႕ျဖစ္တယ္ ေအာက္ပါ ဥပေဒသေတြကိုလည္း သိထားရပါမယ္။

(1)  logbbx=x(2)  logbax=xlogba(3)  logb(xy)=logbx+logby(4)  logb(xy)=logbxlogby

Question : If y=xx, prove that d2ydx21y(dydx)2yx=0.

Solution

        y=xx

    \displaystyle \operatorname{Differentiate \ with \ respect \ to \ x}

    \displaystyle \ \ \frac{1}{y}\ \frac{{dy}}{{dx}}=x\frac{d}{{dx}}(\ln x)+\ln x\frac{d}{{dx}}(x)
     
    \displaystyle \ \ \frac{1}{y}\ \frac{{dy}}{{dx}}=x\cdot \frac{1}{x}+\ln x(1) 

    \displaystyle \frac{1}{y}\ \frac{{dy}}{{dx}}=1+\ln x
 
     \displaystyle \operatorname{Differentiate \ again \ with \ respect \ to \ x}

     \displaystyle \ \ \frac{1}{y}\cdot \frac{d}{{dx}}\left( {\frac{{dy}}{{dx}}} \right)+\frac{{dy}}{{dx}}\cdot \frac{d}{{dx}}\left( {\frac{1}{y}} \right)=\frac{d}{{dx}}(1)+\frac{d}{{dx}}\left( {\ln x} \right)

     \displaystyle \ \ \frac{1}{y}\frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}-\frac{1}{{{{y}^{2}}}}{{\left( {\frac{{dy}}{{dx}}} \right)}^{2}}=0+\frac{1}{x} 

     \displaystyle \ \ \frac{1}{y}\frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}-\frac{1}{{{{y}^{2}}}}{{\left( {\frac{{dy}}{{dx}}} \right)}^{2}}=\frac{1}{x}

     \displaystyle \operatorname{Multiplying \ both \ sides \ with \ y,}

     \displaystyle \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}-\frac{1}{y}{{\left( {\frac{{dy}}{{dx}}} \right)}^{2}}=\frac{y}{x}

    \displaystyle \therefore \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}-\frac{1}{y}{{\left( {\frac{{dy}}{{dx}}} \right)}^{2}}-\frac{y}{x}=0 
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم