In ΔABC, AB=(5−x) cm, BC=(4+x) cm, ∠AsBC=120∘ and AC=y cm.
(a) Show that y2=x2−x+61.
(b) Find the minimum value of y2, and give the value of x for which this occurs.
Solution
AB=(5−x) cm,
BC=(4+x) cm,
∠ABC=120∘
AC=y cm.
(a) By the law of cosines,
AC2=AB2+BC2−2⋅AB⋅ACcos(∠ABC)
y2=(5−x)2+(4+x)2−2(5−x)(4+x)cos120∘
y2=25−10x+x2+16+8x+x2+2(5−x)(4+x)(12)
y2=41−2x+2x2−x2+x+20
y2=x2−x+61
∴
\displaystyle \therefore {{y}^{2}}={{\left( {x-\frac{1}{2}} \right)}^{2}}+60.75
Since \displaystyle {{\left( {x-\frac{1}{2}} \right)}^{2}}\ge 0\ for all \displaystyle x\in R,
\displaystyle {{\left( {x-\frac{1}{2}} \right)}^{2}}+60.75\ge 60.75
\displaystyle \therefore {{y}^{2}}\ge 60.75.
Therefore the minimum value of \displaystyle {{y}^{2}} is \displaystyle 60.75 and this value occurs when \displaystyle x=\frac{1}{2}.
(a) Show that y2=x2−x+61.
(b) Find the minimum value of y2, and give the value of x for which this occurs.
Solution
AB=(5−x) cm,
BC=(4+x) cm,
∠ABC=120∘
AC=y cm.
(a) By the law of cosines,
AC2=AB2+BC2−2⋅AB⋅ACcos(∠ABC)
y2=(5−x)2+(4+x)2−2(5−x)(4+x)cos120∘
y2=25−10x+x2+16+8x+x2+2(5−x)(4+x)(12)
y2=41−2x+2x2−x2+x+20
y2=x2−x+61
∴
\displaystyle \therefore {{y}^{2}}={{\left( {x-\frac{1}{2}} \right)}^{2}}+60.75
Since \displaystyle {{\left( {x-\frac{1}{2}} \right)}^{2}}\ge 0\ for all \displaystyle x\in R,
\displaystyle {{\left( {x-\frac{1}{2}} \right)}^{2}}+60.75\ge 60.75
\displaystyle \therefore {{y}^{2}}\ge 60.75.
Therefore the minimum value of \displaystyle {{y}^{2}} is \displaystyle 60.75 and this value occurs when \displaystyle x=\frac{1}{2}.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!