Processing math: 58%

Law of Cosines and to Find Extremum by Completing Square

 In ΔABC, AB=(5x) cm, BC=(4+x) cm, AsBC=120 and AC=y cm.

(a)     Show that y2=x2x+61.

(b)     Find the minimum value of y2, and give the value of x for which this occurs.

Solution
          AB=(5x) cm,  
          BC=(4+x) cm, 
          ABC=120 
          AC=y cm. 

(a)      By the law of cosines, 

          AC2=AB2+BC22ABACcos(ABC) 
      
          y2=(5x)2+(4+x)22(5x)(4+x)cos120

          y2=2510x+x2+16+8x+x2+2(5x)(4+x)(12)

          y2=412x+2x2x2+x+20

          y2=x2x+61

     

      \displaystyle \therefore {{y}^{2}}={{\left( {x-\frac{1}{2}} \right)}^{2}}+60.75

          Since \displaystyle {{\left( {x-\frac{1}{2}} \right)}^{2}}\ge 0\ for all \displaystyle x\in R,

          \displaystyle {{\left( {x-\frac{1}{2}} \right)}^{2}}+60.75\ge 60.75

      \displaystyle \therefore {{y}^{2}}\ge 60.75.

          Therefore the minimum value of \displaystyle {{y}^{2}} is \displaystyle 60.75 and this value occurs when \displaystyle x=\frac{1}{2}.     
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم