Processing math: 46%

Equation of the Type : a sin θ ± b cos θ = c

  If a and b are positive,


                          asinθ±bcosθ can be written in the form Rsin(θ±α),


                          acosθ±bsinθ can be written in the form Rsin(θα),


  where R=a2+b2,Rcosα=a,Rsinα=b and tanα=ba with 0<α<90.

Example (1)      Solve the equation 8sinθ+6cosθ=5 for 0θ360.

Solution
         
              8sinθ+6cosθ=5

              Let Rcosα=8 and Rsinα=6.

              and \displaystyle \tan \alpha =\frac{6}{8}\Rightarrow \alpha =36{}^\circ 5{2}'

              Since \displaystyle 8\sin \theta +6\cos \theta =R\sin (\theta +\alpha ),

             \displaystyle R\sin (\theta +\alpha )=5\Rightarrow 10\sin (\theta +36{}^\circ 5{2}')=5\Rightarrow \sin (\theta +36{}^\circ 5{2}')=\frac{1}{2}

             \displaystyle \begin{array}{l}\therefore \theta +36{}^\circ 5{2}'=30{}^\circ \\\end{array} (1st quadrant) or

                 \displaystyle \theta +36{}^\circ 5{2}'=150{}^\circ (2nd quadrant) or

                 \displaystyle \theta +36{}^\circ 5{2}'=390{}^\circ (1st quadrant)

             \displaystyle \therefore \theta =-6{}^\circ 5{2}' or \displaystyle \ \theta =113{}^\circ {8}' or \displaystyle \theta =353{}^\circ {8}'

             Since \displaystyle {{0}^{{}^\circ }}\le \theta \le {{360}^{{}^\circ }}, \displaystyle \theta =-6{}^\circ 5{2}'\ is impossible.
             
             \displaystyle \therefore \theta =113{}^\circ {8}' or \displaystyle \theta =353{}^\circ {8}'.   
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم