6 = 3 × 2
The Factor Theorem:
Let f(x) be a polynomial. Then (x-k) is a factor of f(x) if and only if f(k) = 0.
4x3 - (3p + 2)x2 - (p2 - 1)x + 3.
Let f(x) = 4x3 - (3p + 2)x2 - (p2 - 1)x + 3.
x - p is a factor of f(x) only if
f(p) = 0
4p3 - (3p + 2)p2 - (p2 - 1)p + 3 = 0
2p2 - p - 3 = 0
(p + 1) (2p - 3) = 0
p = -1 or p = 3/2
6÷2 => remainder = 0
6÷3 => remainder = 0
အၾကြင္း 0 ရေအာင္စားႏိုင္ေသာ စားကိန္းကို တည္ကိန္း၏ factor ဟုေခၚသည္။
The Factor Theorem:
Let f(x) be a polynomial. Then (x-k) is a factor of f(x) if and only if f(k) = 0.
Example 1
4x3 - (3p + 2)x2 - (p2 - 1)x + 3.
Let f(x) = 4x3 - (3p + 2)x2 - (p2 - 1)x + 3.
x - p is a factor of f(x) only if
f(p) = 0
4p3 - (3p + 2)p2 - (p2 - 1)p + 3 = 0
2p2 - p - 3 = 0
(p + 1) (2p - 3) = 0
p = -1 or p = 3/2
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!