- Let $y=5 x^{3}+7 x^{2}+6$. Find $\dfrac{d y}{d x}, \dfrac{d^{2} y}{d x^{2}}, \dfrac{d^{3} y}{d x^{3}}$.
-
Find $\dfrac{d y}{d x}$ and $\dfrac{d^{2} y}{d x^{2}}$ for each of the following functions.
(a) $y=\dfrac{x}{x-1}\\\\ $
(b) $y=x \sqrt{x+2}\\\\ $
(c) $y=\dfrac{x+1}{x^{2}}\\\\ $
(d) $y=\left(3 x^{2}-2 x+1\right)^{2}\\\\ $
(e) $y=(3 x+2)^{20}\\\\ $
(f) $y=x(2 x-1)^{6}\\\\ $
(g) $y=\dfrac{x+1}{x-1}\\\\ $
(h) $y=\dfrac{3 x^{2}}{x+3}\\\\ $
(i) $y=\dfrac{3}{\sqrt{x+2}}\\\\ $
- If $f(x)=x^{3}-2 x^{2}+3 x+1$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
- If $y=3 x^{2}+4 x$, prove that $x^{2} \dfrac{d^{2} y}{d x^{2}}-2 x \dfrac{d y}{d x}+2 y=0$.
- If $y=\dfrac{2 x^{2}+3}{x}$, prove that $x^{2} \dfrac{d^{2} y}{d x^{2}}+x \dfrac{d y}{d x}=y$.
- If $y=x^{2}+2 x+3$, show that $\left(\dfrac{d y}{d x}\right)^{2}+\left(\dfrac{d^{2} y}{d x^{2}}\right)^{3}=4 y$.
- If $y=\dfrac{x^{4}-3}{x^{2}}$, show that $x^{2} y^{\prime \prime}+x y^{\prime}=4 y$.
- If $y=2 x^{3}-\dfrac{3}{x}$, show that $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=0$.
- If $y=x^{2}+x+1$, show that $\left(\dfrac{d y}{d x}\right)^{2}+\dfrac{d^{2} y}{d x^{2}}=4 y-1$.
- Given that $y=(2 x-3)^{3}$, find the value of $x$ when $\dfrac{d^2y}{dx^{2}}=0$.
- Given that $f(x)=p x^{3}+(1-3 p) x^{2}-4$. When $x=2,{f}^{\prime \prime}(x)=-1$. Find the value of $p$.
- The displacement of a particle in metres at time $t$ seconds is modelled by the function $$ f(t)=\dfrac{t^{2}+2}{\sqrt{t}} $$ The acceleration of the particle in $\mathrm{m} \mathrm{s}^{-2}$ is the second derivative of this function. Find an expression for the acceleration of the particle at time $t$ seconds.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!