Processing math: 76%

Calculus Exercise (3) : Rate of Change

General Rules of Differentiation
1 dCdx=0,C= constant
2 ddxxn=nxn1
3 ddx[u(x)±v(x)]=ddx[u(x)]±ddx[v(x)]
4 ddx[Cu(x)]=Cddxu(x),C= constant

  1. Differentiate the following with respect to x.

    (a) 4x3

    (b) 4x3

    (c) 23x

    (d) x3+1x

    (e) x21x3x2

    (f) 3x24x+1x

    (g) (x+1)(x+2)

    (h) (3x+1)(2x)

    (i) (3x2)2

    (j) (2x+1)3

    (k) 2x33x24x

    (l) x32x+3x



  2.  (a) ddx(4x3)=12x (b) ddx(4x3)=ddx(4x3)=12x4=12x4 (c) ddx(23x)=ddx(2x13)=23x43=23x43 (d) ddx(x3+1x)=ddx(x3)+ddx(x12)=3x212x32=3x212x32 (e) ddx(x21x3x2)=ddx(x2)ddx(x1)ddx(3x2)=2x+x2+6x3=2x+1x2+6x3 (f) ddx(3x24x+1x)=ddx(3x2x4xx+1x)=ddx(3x4x12+x1)=3+2x32x2=3+2x321x2 (g) ddx[(x+1)(x+2)]=ddx(x2+3x+2)=2x+3 (h) ddx[(3x+1)(2x)]=ddx(2+5x3x2)=56x (i) ddx(3x2)2=ddx(9x212x+4)=18x12 (j) ddx(2x+1)3=ddx[(2x)3+3(2x)2+3(2x)+1]=ddx[8x3+12x2+6x+1]=24x2+24x+6 (k) ddx[2x33x24x]=ddx[2x34x3x24x]=ddx[12x5234x32]=54x3298x12 (l) ddx[x32x+3x]=ddx(x3)ddx(2x)+ddx(3x12)=3x2232x32

  3. Find dydx.

    (a) y=3x2

    (b) y=1x

    (c) y=x+1x

    (d) y=x3+2x23x6

    (e) y=x(1x2)2

    (f) y=x34+6x23

    (g) y=(x+1x)2

    (h) y=(1x)(3x+2)x

    (i) y=(x1+1x)(x11x)



  4. (a)y=3x2dydx=6x(b)y=1x=x1dydx=x2=1x2(c)y=x+1x=x12+x12dydx=12x1212x32=12[1x121x32](d)y=x3+2x23x6dydx=3x2+4x3(e)y=x(1x2)2=x(12x2+x4)=x2x4+x5dydx=18x3+5x4(f)y=x34+6x23=x34+6x23dydx=34x144x53=34x144x53(g)y=(x+1x)2=x+2+1x=2+x+x1dydx=1x2=11x2(h)y=(1x)(3x+2)x=2+x3x2x=2x12+x123x32dydx=x32+12x1292x12=1x32+12x1292x12(i)y=(x1+1x)(x11x)=(x1)21x2=x22x+1x2dydx=2x2+2x3=2x2+2x3

  5. Given f(x)=(x23)2, find f(x) and f(1).


  6. f(x)=(x23)2=x46x2+9f(x)=4x312xf(1)=4(1)312(1)=8

  7. Given that f(x)=4x32, find f(x) and f(1),f(4),f(19).


  8. f(x)=4x32f(x)=6x12f(1)=6(1)12=6f(4)=6(4)12=12f(19)=6(19)12=2

  9. Calculate the rate of change of f:x3x+13x at x=8.


  10. f(x)=3x+13x=x13+x13f(x)=13x2313x43=13[1x231x43]f(8)=13[18231843]=13[14116]=13[4116]=116

  11. Given that A=2r24r+5, find the rate of change of A with respect to r when r=3.


  12. A=2r24r+5dAdr=4r4=4(r1)dAdr|r=3=4(31)=8

  13. Given that V=43r334r2+r5, find the rate of change of V with respect to r when r=2.


  14. V=43r334r2+r5dVdr=4r232r+1dVdr|r=2=4(2)232(2)+1=163+1=14

  15. If a ball is thrown into the air with a velocity of 40ft/s, its height (in feet) after t seconds is given by y=40t16t2. Find the velocity when t=2.


  16. y=40t16t2
    Let the velocity of the ball be v.
    Since velocity is the rate of change of displacement with respect to time,
    v=dydt=4032t When t=2,v=dydt|t=2=4032(2)=24ft/s After t seconds, the ball is falling down with a velocity of 24ft/s.

  17. The displacement (in meters) of a particle moving in a straight line is given by the equation of motion s=1t2, where t is measured in seconds. Find the velocity of the particle at times t=a,t=1,t=2, and t=3.


  18. s=1t2
    Let the velocity of the particle be v.
    Since velocity is the rate of change of displacement with respect to time,
    v=dsdt=2t3
    When t=a,v=dsdt|t=a=2a3 m/s
    When t=1,v=dsdt|t=1=213=2 m/s
    When t=2,v=dsdt|t=2=223=0.5 m/s
    When t=3,v=dsdt|t=3=233=0.074 m/s

  19. The position of a stone thrown from a bridge is given by s=10t16t2 feet (below the bridge) after t seconds.

    (a) What is the average velocity of the stone between t1=1 and t2=5 seconds?

    (b) What is the instantaneous velocity of the stone at t=1 second.



  20. s=10t16t2
    When t1=1,s1=1016=6ft
    When t2=5,s2=10(5)16(5)2=350ft
    and \delta t=5-1=4 \text{seconds}\\\\
    \therefore Average velocity =\frac{\delta s}{\delta t}=-\frac{344}{4}=-86 \mathrm{ft} / \mathrm{s}\\\\
    v=\frac{d s}{d t}=10-\left.32 t \Rightarrow \frac{d s}{d t}\right|_{t=1}=10-32=-22 \mathrm{ft} / \mathrm{s}\\\\
    \therefore Instantaneous velocity of the stone at t=1 second is -22 \mathrm{~ft} / \mathrm{s}\\\\
    The negative sign of the velocity means that the stone is decelerating.

  21. The displacement (in metre) of a particle moving in a straight line is given by s=t^{4}-4 t^{3}-20 t^{2}+20 t, t \geq 0 where t is measured in seconds.

    (a) At what time does the particle have a velocity of 20 \mathrm{~m} / \mathrm{s} ?

    (b) At what time is the acceleration 0 ?



  22. s=t^{4}-4 t^{3}-20 t^{2}+20 t\\\\
    Let the velocity of and acceleration of the particle be v and a respectively.
    Since velocity is the rate of change of displacement and acceleration is the rate of change of velocity with respect to time,
    \begin{aligned} v&=\frac{d s}{d t}\\\\ &=4 t^{3}-12 t^{2}-40 t+20\\\\ &=4\left(t^{3}-3 t^{2}-10 t+5\right) \mathrm{m} / \mathrm{s} \\\\ a&=\frac{d v}{d t}\\\\ &=12 t^{2}-24 t-40\\\\ &=4\left(3 t^{2}-6 t-10\right) \mathrm{m} / \mathrm{s}^{2} \\\\ \end{aligned}
    \begin{aligned} \text { When } v=20 \mathrm{~m} / \mathrm{s},\quad\quad & \\\\ 4\left(t^{3}-3 t^{2}-10 t+5\right)&=20 \\\\ \therefore t^{3}-3 t^{2}-10 t&=0 \\\\ t\left(t^{2}-3 t-10\right)&=0\\\\ t(t-5)(t+2)&=0 \\\\ \therefore\quad t=0 \text { or } t&=5(t \geq 0) \\\\ \text { When } a&=0,\\\\ 4\left(3 t^{2}-6 t-10\right)&=0 \\\\ \therefore 3 t^{2}-6 t-10&=0 \\\\ t^{2}-2 t&=\frac{10}{3} \\\\ t^{2}-2 t+1&=\frac{13}{3} \\\\ \therefore(t-1)^{2}&=\frac{13}{3} \\\\ t-1&=2.082\\\\ t&=3.082 \text { seconds } \end{aligned}

  23. When a marble is moving in a groove, the distance s centimetres from one end at time t second is given by s=5 t-t^{2}. Find the speed of marble at t=2. Find t when the speed of marble is zero.


  24. s=5 t-t^{2}\\\\
    Let the speed of the marble be v.
    \begin{aligned} &\\\\ v&=\frac{d s}{d t}\\\\ &=5-2 t\\\\ \text { When } t&=2,\\\\ \left.\frac{d s}{d t}\right|_{t=2}&=5-2(2)\\\\ &=1 \mathrm{~cm} / \mathrm{s} \\\\ \text { When } v&=0,\\\\ 5-2 t&=0 \\\\ \therefore t&=2.5 \text { seconds } \end{aligned}

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post