Geometric Progression တစ်ခု၏ $n$ terms အထိ ပေါင်းလဒ်ကို
$S_n= \dfrac{a(1-r^n)}{1-r}$
ဟုသိရှိခဲ့ပြီး ဖြစ်သည်။ ညီမျှခြင်းကို အောက်ပါအတိုင်း အကျယ်ဖြန့်ကြည့်ပါမည်။
$\begin{aligned} S_n&= \dfrac{a(1-r^n)}{1-r}\\\\ &= \dfrac{a-ar^n}{1-r}\\\\ &= \dfrac{a}{1-r}-\dfrac{ar^n}{1-r}\\\\ \end{aligned}$
Case I.
$|r|>1 \text{ i.e., } r<-1 \text{ or } r>1,$
$(\text{ e.g., } a=2, r=2)$
$\begin{array}{|r|r|} \hline n\hspace{.2cm} & S_n\hspace{4cm} \\ \hline 1 & 2 \\ \hline 5 & 62 \\ \hline 10 & 2046 \\ \hline 50 & 2251799813685246 \\ \hline 100 & 2535301200456458802993406410750 \\ \hline \end{array}$ |
---|
$n\rightarrow \infty$ ($n$ သည် အနန္တပမာဏသို့ ချဉ်းကပ်သွားသည်)
$S_n\rightarrow \infty$ ($S_n$ သည်လည်း အနန္တပမာဏသို့ ချဉ်းကပ်သွားသည်)
ထို့ကြောင့် အနန္တကိန်းလုံးအရေအတွက်ထိ ပေါင်းလဒ်ကို ရှာယူရန် မဖြစ်နိုင်တော့ပါ။
ထိုအခြေအနေကို divergent condition ဟုခေါ်သည်။ Divergent Condition တွင် Infinite Sum (အနန္တကိန်းလုံးအရေအတွက်ထိ ပေါင်းလဒ်) ကို ရှာ၍မရနိုင်ပါ။
Case II.
$|r|=1 \text{ i.e., } r=\pm 1$
အကယ်၍ $r=1$ ဖြစ်လျှင်
$S_n = a + a + a + \dots$ to $n$ terms = $na$
ထိုအခါ $n$ ၏ တန်ဖိုးကြီးလာသည်နှင့် အမျှ $S_n$ ၏ ပမာဏ (magnitude) သည်လည်း ကြီးလာပါဦးမည်။
ထို့ကြောင့် အနန္တကိန်းလုံးအရေအတွက်ထိ ပေါင်းလဒ်ကို ရှာယူရန် မဖြစ်နိုင်တော့ပါ။
အကယ်၍ $r=-1$ ဖြစ်လျှင်
$S_n = a - a + a -a + a - \dots$ to $n$ terms = $a \text { if } n \text { is odd}$
$S_n = a - a + a -a + a - \dots$ to $n$ terms = $0 \text { if } n \text { is even}$
ထို့ကြောင့် အနန္တကိန်းလုံးအရေအတွက်ထိ ပေါင်းလဒ်ကို ရှာယူရန် မလိုတော့ပါ။
Case III.
$|r|<1 \text{ i.e., } -1< r < 1 $
$ (\text{ e.g., } a=2, r=\dfrac{1}{2})$
$\begin{array}{|r|l|r|} \hline n\hspace{.2cm} & \hspace{1.5cm}r^n & S_n\hspace{2.5cm} \\ \hline 1 & 0.5 & 2 \\ \hline 2 & 0.25 & 3 \\ \hline 3 & 0.125 & 3.5 \\ \hline 4 & 0.0525 & 3.75 \\ \hline 5 & 0.03125 & 3.875 \\ \hline 10 & 0.0009765625 & 3.9960937500000000000 \\ \hline 50 & 8.88\times 10^{-16}\approx 0 & 3.9999999999999964473 \\ \hline 100 & 7.88\times 10^{-31}\approx 0 & 4.0000000000000000000 \\ \hline 1000 & 9.33\times 10^{-32}\approx 0 & 4.0000000000000000000 \\ \hline \end{array}$ |
---|
$|r|< 1$ အတွက် $n\rightarrow \infty$ ဖြစ်သည့်အခါ $S_n$ သည် တန်ဖိုးတစ်ခုတွင် မပြောင်းမလဲ တည်ရှိနေသည်။ အဆိုပါတန်ဖိုးမှာ limit of $S_n$ as $n$ approaches $\infty$ ပင် ဖြစ်သည်။
Exercises
- A geometric progression is defined by $u_{n}=\dfrac{1}{3^{n}}$. Find $S_{n}$ and the smallest value of $n$ for which the sum of the first $n$ terms and the sum to infinity differ by less than $\dfrac{1}{100}$.
- Find the smallest value of $n$ for which the sum to $\mathrm{n}$ terms and the sum to infinity of a G.P.
$1, \dfrac{1}{5}, \dfrac{1}{25}, \ldots$ differ by less than $\dfrac{1}{1000}$.
- The first three terms of a geometric progression are $3(q+5), 3(q+3)$ and $(q+7)$ respectively.
Calculate the possible values of $q$. For each possible value of $q$ find the common ratio and
the sum to infinity of the geometric progression.
- A geometric progression has first term $1$ and common ratio $r$. A second geometric progression has
first term $4$ and common ratio $\dfrac{r}{4}$. The two progressions have the same sum to infinity, $S$.
Find the values of $r$ and $S$.
- A geometric progression, in which all the terms are positive, has common ratio $r$.
The sum of the first $n$ terms is less than $90 \%$ of the sum to infinity. Show that $r^{n}>0.1$.
- In an infinite G.P, each term is equal to three times the sum of all the terms that follow it.
The sum of the first two terms is $15$ . Find the sum of the series to infinity.
- Let $x=1+a+a^{2}+\ldots$ and $y=1+b+b^{2}+\ldots$, where $|a|<1$ and $|b|< 1$. Prove that
$1+a b+a^{2} b^{2}+\ldots=\dfrac{x y}{x+y-1}$.
- The sum of an infinite geometric series is $15$ and the sum of the squares of the terms
to infinity is $45$ . Find the first term and the common ratio.
- Express the values of $x$ for which the sum to infinity of an infinite geometric series
$\dfrac{1}{1+x}+\dfrac{1}{(1+x)^{2}}+\dfrac{1}{(1+x)^{3}}+\ldots$ exists. Hence find the general
expression for the sum to infinity for this range of $x$.
- If $b=a+a^{2}+a^{3}+\ldots$ where $|a|<1$, prove that $a=\dfrac{b}{1+b}$.
- The sum of infinite terms of a G.P. is $x$ and on squaring each term of it, the sum will be $y$,
find the common ratio in terms of $x$ and $y$.
- If $S_{1}, S_{2}, S_{3}, \ldots, S_{p}$ are the sums to infinity of geometric series whose
first terms are $1,2,3, \ldots, p$ and whose common ratios are $\dfrac{1}{2}, \dfrac{1}{3}, \dfrac{1}{4}, \ldots, \dfrac{1}{p+1}$ respectively,
show that $S_{1}+S_{2}+S_{3}+\ldots+S_{p}=\dfrac{p(p+3)}{2}$.
- A geometric progression has the first term 2 and common ratio $0.95$. Calculate the least value
of $n$ for which $S-S_{n}< 1$.
- In an infinite G.P., if the first term is equal to the twice of the sum of the remaining terms,
find the common ratio.
- If the sum to infinity of an infinite geometric progression is twice the first term and the
fifth term is $\dfrac{1}{16}$, find the sum of the first five terms of that G.P.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!