1. Simplify by using the rules of exponents and name the rules used.
(a) $\displaystyle \frac{{36{{a}^{4}}{{b}^{5}}}}{{100{{a}^{7}}{{b}^{3}}}}$
Show/Hide Solution
$\begin{aligned} &\ \ \ \ \ \displaystyle \frac{{36{{a}^{4}}{{b}^{5}}}}{{100{{a}^{7}}{{b}^{3}}}}\\ &=\displaystyle\frac{9}{{25}}\times \frac{1}{{{{a}^{{7-4}}}}}\times {{b}^{{5-3}}}\ \ \ \ \ (\text{Division Rule})\\ &=\displaystyle \frac{{9{{b}^{2}}}}{{25{{a}^{3}}}} \end{aligned}$
(b) $\displaystyle \frac{27 a^{2} b^{5}}{\left(9 a^{2} b\right)^{2}}$
Show/Hide Solution
$\begin{aligned} &\ \ \ \ \ \displaystyle \frac{27 a^{2} b^{5}}{\left(9 a^{2} b\right)^{2}}\\ &=\displaystyle \frac{{27{{a}^{2}}{{b}^{5}}}}{{81{{a}^{4}}{{b}^{2}}}}\ \ \ \ \ (\text{Power of a Powar Rule})\\ &=\displaystyle \frac{1}{3}\times \frac{1}{{{{a}^{{4-2}}}}}\times {{b}^{{5-2}}}\ \ \ \ \ (\text{Division Rule})\\ &=\displaystyle \frac{{{{b}^{3}}}}{{3{{a}^{2}}}} \end{aligned}$
(c) $\displaystyle \left(\frac{-135 a^{4} b^{5} c^{6}}{315 a^{6} b^{7} c^{8}}\right)^{2}$
Show/Hide Solution
(d) $\displaystyle \left(\frac{x^{4}}{y^{5}}\right)^{3}\left(\frac{y^{3}}{x^{2}}\right)^{2}$
Show/Hide Solution
(e) $\displaystyle \frac{2^{3^{2}}}{\left(2^{2}\right)^{3}}$
Show/Hide Solution
2. Evaluate the followings.
(a) $\displaystyle \frac{54^{2} \times 12^{3} \times 64^{2}\left(3^{2} \times 4^{3} \times 5^{2}\right)^{3}}{\left(3^{2} \times 15 \times 20^{3}\right)^{4}}$
Show/Hide Solution
$\begin{aligned} &\ \ \ \ \ \displaystyle \frac{{{{{54}}^{2}}\times {{{12}}^{3}}\times {{{64}}^{2}}{{{\left( {{{3}^{2}}\times {{4}^{3}}\times {{5}^{2}}} \right)}}^{3}}}}{{{{{\left( {{{3}^{2}}\times 15\times {{{20}}^{3}}} \right)}}^{4}}}}\\ &=\displaystyle \frac{{{{{\left( {{{3}^{3}}\times 2} \right)}}^{2}}\times {{{\left( {{{2}^{2}}\times 3} \right)}}^{3}}\times {{{\left( {{{2}^{6}}} \right)}}^{2}}\times {{{\left( {{{3}^{2}}\times {{2}^{6}}\times {{5}^{2}}} \right)}}^{3}}}}{{{{{\left( {{{3}^{2}}\times 3\times 5\times {{{\left( {{{2}^{2}}\times 5} \right)}}^{3}}} \right)}}^{4}}}}\\ &=\displaystyle \frac{{{{3}^{6}}\times {{2}^{2}}\times {{2}^{6}}\times {{3}^{3}}\times {{2}^{1}}^{2}\times {{3}^{6}}\times {{2}^{{18}}}\times {{5}^{6}}}}{{{{3}^{{12}}}\times {{5}^{4}}\times {{{\left( {{{2}^{2}}\times 5} \right)}}^{{12}}}}}\\ &=\displaystyle \frac{{{{3}^{{15}}}\times {{2}^{38}}\times {{5}^{6}}}}{{{{3}^{{12}}}\times {{5}^{4}}\times {{2}^{{24}}}\times {{5}^{{12}}}}}\\ &=\displaystyle \frac{{{{3}^{3}}\times {{2}^{{14}}}}}{{{{5}^{{10}}}}} \end{aligned}$
3. Simplify.
(a) $\displaystyle \left(\frac{3^{m}}{15^{n}}\right)^{3}\left(\frac{45^{n}}{255^{m}}\right)^{2}$
Show/Hide Solution
$\begin{aligned} &\ \ \ \ \ \displaystyle \left(\frac{3^{m}}{15^{n}}\right)^{3}\left(\frac{45^{n}}{255^{m}}\right)^{2}\\ &=\displaystyle {{\left( {\frac{{{{3}^{m}}}}{{{{3}^{n}}\times {{5}^{n}}}}} \right)}^{3}}{{\left( {\frac{{{{3}^{2}}^{n}\times {{5}^{n}}}}{{{{3}^{m}}\times {{5}^{m}}\times {{{17}}^{m}}}}} \right)}^{2}}\\ &=\displaystyle \left( {\frac{{{{3}^{3}}^{m}}}{{{{3}^{3}}^{n}\times {{5}^{3}}^{n}}}} \right)\left( {\frac{{{{3}^{4}}^{n}\times {{5}^{{2n}}}}}{{{{3}^{{2m}}}\times {{5}^{{2m}}}\times {{{17}}^{{2m}}}}}} \right)\\ &=\displaystyle \frac{{{{3}^{{3m+4}}}^{n}\times {{5}^{{2n}}}}}{{{{3}^{{2m+3n}}}\times {{5}^{{2m+3n}}}\times {{{17}}^{{2m}}}}}\\ &=\displaystyle \frac{{{{3}^{{m+n}}}}}{{{{5}^{{2m+n}}}\times {{{289}}^{m}}}} \end{aligned}$
(b) $\displaystyle \left(\frac{20^{x}}{400^{y}}\right)^{2}\left(\frac{150^{y^{2}}}{180^{x}}\right)^{3}$
Show/Hide Solution
(c) $\displaystyle \frac{\left(x^{3}-y^{3}\right)(x+y)}{\left(x^{2}-y^{2}\right)^{3}}$
Show/Hide Solution
(d) $\displaystyle \frac{\left(x^{a-b} x^{b-c}\right)^{a}\left(\frac{x^{a}}{x^{c}}\right)^{c}}{\left(x^{b} x^{c}\right)^{a} \div\left(x^{a+c}\right)^{c}}$
Show/Hide Solution
4. Evaluate the followings.
Show/Hide Solution
5. Simplify the followings.
Show/Hide Solution
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!