ပညာရေး ဝန်ကြီးဌာန၏ သင်္ချာ နမူနာ - မေးခွန်း ပုံစံ(၃) - အဖြေ

2019 SAMPLE QUESTION (3)
MATRICULATION EXAMINATION
DEPARTMENT OF MYANMAR EXAMINATION
MATHEMATICS                                  Time Allowed: 3 hours
WRITE YOUR ANSWERS IN THE ANSWER BOOKLET.

SECTION (A)
(Answer ALL questions.)

1.(a)      If f:RR is defined by f(x)=x2+3, find the function g such that (gf)(x)=2x2+3.
(3 marks)

Show/Hide Solution
$ \displaystyle     f(x)=x2+3    (gf)(x)=2x2+3    g(f(x))=2x2+3    g(x2+3)=2(x2+3)3  g(x)=2x3$


1.(b)      The expression 6x22x+3 leaves a remainder of 3 when divided by xp. Determine the values of p.
(3 marks)

Show/Hide Solution
$ \displaystyle     Let f(x)=6x22x+3    f(x) leaves a remainder of 3     when divided by xp.   f(p)=3   6p22p+3=3   3p2p=0   p(3p1)=0   p=0 (or) p=13   $


2.(a)      Find the coefficient of x10 in the expansion of (21x2)8
(3 marks)

Show/Hide Solution
$ \displaystyle       (r+1)th term in the expansion of(21x2)8   =8Cr28r(1)rx2r      For x10, 2r=10r=5    Coefficient of x10=8C523(1)5                                  =8C323(1)5  [nCr=nCnr]                                  =8×7×61×2×3(8)(1)                                  =448$


2.(b)      Which term of the A.P. 6,13,20,27,is111?
(3 marks)

Show/Hide Solution
$ \displaystyle     6,13,20,27,...,111 is an A.P.  a=6, d=136=7,un=111    un=a+(n1)d  6+(n1)7=111   7(n1)=105    n1=15  n=16  $


3.(a)      If $ \displaystyle A=\left( {2015
} \right),B=\left( {102k
} \right)findthevalueof \displaystyle ksuchthat \displaystyle AB = BA.$
(3 marks)

Show/Hide Solution
$ \displaystyle    A=(2015),B=(102k)     AB=BA    (2015)(102k) =(102k) (2015)    (2+00+01+100+5k)=(2+00+04+k0+5k)     (20115k)=(204+k5k)   4+k=11k=7$


3.(b)      If a die is rolled 60 times, what is the expected frequency of a number divisible by 3 turns up?
(3 marks)

Show/Hide Solution
$ \displaystyle      When a die is rolled once,     Set of all possible outcomes = {1, 2, 3, 4, 5, 6}      Number of possible outcomes = 6     Set of favourable outcomes for a number divisible by 3 = {3, 6 }     Number of favourable outcomes = 2     P(a number divisible by 3)=26=13     When a die is rolled 60 times,     Expected frequency for a number divisible by 3 turns up      =probability ×number of trials      =13×60      =20$


4.(a)      In the given figure, AB=BC. Find x and y.

(3 marks)

Show/Hide Solution
$ \displaystyle      ABPC is a cyclic quadrilateral.    y+36=180    y=144      Since AB=BC,      ACB=36    ABC=180(36+36)=108      Since ABCD is a cyclic quadrilateral,      x+108=180    x=72$


4.(b)      It is given that a and b are non-zero and non-parallel vectors. If 3a +x(ba)=y(a+2b) find the values of x and y.
(3 marks)

Show/Hide Solution
$ \displaystyle     a and b are non-zero and non-parallel vectors.    3a +x(ba)=y(a+2b)   3a +xbxa=ya+2yb   (3x)a +xb=ya+2yb   3x=y and x=2y   32y=y3y=3y=1   x=2(1)=2$


5.(a)      Prove that cosecθ=cos2θsinθ+sin2θcosθ.
(3 marks)

Show/Hide Solution
$ \displaystyle    LHS =cosecθ   RHS =cos2θsinθ+sin2θcosθ             =cos2θcosθ+sin2θsinθsinθcosθ             =cos(2θθ)sinθcosθ             =cosθsinθcosθ             =1sinθ             =cosecθ   cosecθ=cos2θsinθ+sin2θcosθ$


5.(b)      Evaluate limx2x38x2+3x10 and limx2xa2x+a.

(3 marks)

Show/Hide Solution
       limx2x38x2+3x10

   =  limx2(x2)(x2+2x+4)(x2)(x+5)

   =  limx2x2+2x+4x+5

   =  22+2(2)+42+5

   =  127


       limx2xa2x+a

   =  limxx(2ax)x(2+ax)

   =  limx2ax2+ax

   =  limx202+0

   =  1


SECTION (B)
(Answer any FOUR questions.)

6.(a)      A function f is defined by f(x)=3x1. Determine whether (ff)1(x) is the same as (f1f1)(x).
(5 marks)

Show/Hide Solution
$ \displaystyle      f(x)=3x1     Let f1(x)=y,then f(y)=x   3y1=x   y=x+13   f1(x)=x+13   (f1f1)(x)=f1(f1(x))                            =f1(x+13)                            =x+13+13                            =x+49     Let (ff)1(x)=z then (ff)(z)=x   f(f(z))=x   f(3z1)=x   3(3z1)1=x   3z1=x+13   3z=x+43   z=x+49   (ff)1(x)=x+49   (ff)1(x)= (f1f1)(x)$


6.(b)      Given that f(x)=x3+px22x+43 has a factor x+2, find the value of p. Show that x23 is also a factor and solve the equation f(x) = 0.
(5 marks)

Show/Hide Solution
$ \displaystyle Missing \end{array} \end{array}$


7.(a)      Let J+ be the set of all positive integers. Is the function defined by xy=x+3y a binary operation on J+? Why? If it is a binary operation, find (23)4. Solve the equation (k5)(3k)=2k+8.
(5 marks)

Show/Hide Solution
$ \displaystyle    J+=the set of all positive integers.   xy=x+3y     Since x,yJ+,3y  J+. x+3yJ+ xyJ+ Closure property is satisfied.  is a binary operation. 23=2+3(3)=11 (23)4=114                    =11+3(4)                    =23   k5=k+3(5)=15+k   3k=3+3(k)=3+3k   (k5)(3k)=2k+8   [given] (15+k)(3+3k)=2k+8 122k=2k+8 4k=4k=1$


7.(b)      The first three terms in the expansion of (a+b)n, in ascending powers of b, are denoted by p,q and r respectively. Show that q2pr=2nn1.
(5 marks)

Show/Hide Solution
$ \displaystyle      (a+b)n=p+q+r+...     nC0an+nC1an1b+nC2an2b2+...=p+q+r+...     an+nan1b+n(n1)2an2b2+...=p+q+r+...   p=an,  q=nan1b,  r=n(n1)2an2b2   q2pr=(nan1b)2ann(n1)2an2b2   q2pr=n2a2n2b2n(n1)2a2n2b2   q2pr=n22n(n1)   q2pr=2nn1$


8.(a)      Find the solution set of the inequation 2+3x>5x2 and illustrate it on the number line.
(5 marks)

Show/Hide Solution
$ \displaystyle     2+3x>5x2  5x23x2<0    Let y=5x23x2    When y=0,    5x23x2=0    (5x+2)(x1)=0  x=25 (or) x=1  The graph cuts the x-axis at (25,0) and (1,0).    When x=0,y=2  The graph cuts the y-axis at (0,2).$


$ \displaystyle   Solution set={x|25<x<0}    Number Line:$



8.(b)      The sum of four consecutive numbers in an A.P. is 28. The product of the second and third numbers exceeds that of the first and last by 18. Find the numbers.
(5 marks)

Show/Hide Solution
$ \displaystyle      Let the four consecutive numbers in A.P. be     a,a+d,a+2d and a+3d.     By the problem,     a+a+d+a+2d+a+3d=28     4a+6d=28   2a+3d=14     (1)     (a+d)(a+2d)a(a+3d)=18   a2+3ad+2d2a23ad=18   d2=9d=±3  (2)     When d=3,      2a9=14 a=232     1st number =232      2nd number =172      3rd number =112      4th number =52     When d=3,      2a+9=14 a=52    1st number =52      2nd number =112      3rd number =172      4th number =232$


9.(a)      The product of the first 3 terms of a G.P. is 1 and the product of the third, fourth and fifth terms is 112564. Find the fifth term of the G.P.
(5 marks)

Show/Hide Solution
$ \displaystyle      Let u1,u2,u3,... be the given G.P.     Let a be the first term and r be      the common ratio of given G.P.     By the problem,     u1×u2×u3=1   a×ar×ar2=1     (ar)3=1a=1r     u3×u4×u5=112564     ar2×ar3×ar4=112564   a3r9=72964     1r3×r9=72964     r6=72964r=±32   u5=ar4=1r×r4=r3=±278$


9.(b)      Show that the matrix $ \displaystyle A=\left( {2332
} \right)satisfiestheequation \displaystyle A^2 - 4A - 5I = O,where \displaystyle Iistheunitmatrixoforder \displaystyle 2.$
(5 marks)

Show/Hide Solution
$ \displaystyle      A=(2332),I=(1001)     A24A5I  = (2332)(2332)4(2332)5(1001)  = (4+96+66+69+4)+(812128)+(5005)  = (4+9856+612+06+612+09+485)  = (0000)  = O  A24A5I=O$


10.(a)    Find the inverse of the matrix $ \displaystyle \left( {7856
} \right)anduseittosolvethesystemofequations \displaystyle 7x + 8y = 10, 5x + 6y = 7.$
(5 marks)

Show/Hide Solution
$ \displaystyle      Let A=(7856)   detA=4240=20   A1 exists.  A1= 12(6857)    7x+8y=10    5x+6y=7    Transforming into matrix form,    (7856)(xy)=(107)  (7856)1(7856)(xy)=(7856)1(107)  (1001)(xy)=12(6857)(107)  (xy)=12(605650+49)  (xy)=12(41)   (xy)=(212)   x=2,y=12$


10.(b)    A coin is tossed three times. Head or tail is recorded each time. Drawing a tree diagram, find the probabilities of getting exactly one head, and getting no head.
(5 marks)

Show/Hide Solution


$ \displaystyle     Number of possible outcomes=8      Set of favourable outcomes for getting       exactly one head= {HTT,THT,TTH}    Number favourable outcomes for getting       exactly one head=3    P(getting exactly one head)=38      Set of favourable outcomes for getting       no head= {TTT}    Number favourable outcomes for getting       no head=1    P(getting no head)=18      $


SECTION (C)
(Answer any THREE questions.)

11.(a)    Two circles intersect at A,B. At A a tangent is drawn to each circle meeting the circles again at P and Q respectively. Prove that ABP=ABQ.
(5 marks)

Show/Hide Solution

$ \displaystyle     InABP,    ABP=α      ( between tangent and chord                          = in alternate segment)    Similarly, inABQ,    ABQ=β      ( between tangent and chord                          = in alternate segment)    But α=β       (vertically opposite  s)  ABP=ABQ$


11.(b)    In ABC,AD and BE are altitudes. If ACB=45°, prove that α(DEC)=α(ABDE).
(5 marks)

Show/Hide Solution

$ \displaystyle        Since AEB =ADB=90,       ABDE is cyclic.       ABC =DEC       In DEC and ABC,        ABC =DEC  (proved)       C=C (common )     DECABC   (AA corollary)       α(DEC)α(ABC)=DC2AC2        In right ACD,        DCAC=cos(ACB)=cos45=12      DC2AC2=12α(DEC)α(ABC)=12      2α(DEC)=α(ABC)      2α(DEC)=α(DEC)+α(ABDE)      α(DEC)=α(ABDE)$


12.(a)    In ABC,AB=AC. P is a point on BC, and Y is a point on AP. The circles BPY and CPY cut AB and AC respectively at X and Z. Prove XZBC.
(5 marks)

Show/Hide Solution

$ \displaystyle        InBPY,       AXAB=AYAP       Similarly, inCPY,       AZAC=AYAP     AXAB=AZAC       BCZX is cyclic.     θ=γ   (exterior  of cyclic quadrilateral                   =interior opposite )       Since AB=AC,β=γ.     θ=β       Since θ and β are corresponding        angles, we can say XZBC.$


12.(b)    Given that sinα=1517 and that cosβ=35 and that α and β are in the same quadrant, find without using tables, the values of sin2α,cosα2 and cos2β.
(5 marks)

Show/Hide Solution
$ \displaystyle     sinα=1517,   cosβ=35    and α and β are in the same quadrant.    Sincesinα is positive andcosβ is negative,    α and β will be in 2nd quadrant.$


$ \displaystyle   sinα=1517, cosα=817  sin2α=2sinα cosα             =2 (1517)(817)             =240289  cosα2=±1+cosα2             =±18172             =±334             =±33434   Since 90<α<180,45<α2<90,  cosα2=33434    cosβ=35     [given]    cos2β=2cos2β1  cos2β=2(35)21  cos2β=725$


13.(a)    In A town A is 50 miles away from a town B in the direction N35°E and a town C is 68 miles from B in the direction N42°12W. Calculate the distance and bearing of A from C.
(5 marks)

Show/Hide Solution

$ \displaystyle Missing \end{array}\end{array}\\\ \ \ \ \ P{{R}^{2}}=7124-1507\\\ \ \ \ \ P{{R}^{2}}=5617\\\ \ \ \ \ PR=74.95\ \text{mi}\\\ \ \ \ \ \cos \gamma = \displaystyle \frac{{P{{R}^{2}}+Q{{R}^{2}}-P{{Q}^{2}}}}{{2(PR)(QR)}}\\\ \ \ \ \ \cos \gamma = \displaystyle \frac{{5617+4624-2500}}{{2(74.95)(68)}}\\\ \ \ \ \ \cos \gamma = \displaystyle \frac{{7741}}{{74.95\times 136}}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Missing \end{array}\end{array} \\\ \ \ \ \ \cos \gamma =\cos 40{}^\circ 3{5}'\\\ \ \ \ \ \gamma =40{}^\circ 3{5}'\\\therefore \ \ \ \theta =42{}^\circ 1{2}'+40{}^\circ 3{5}'=82{}^\circ 4{7}'\\\therefore \ \ \ P\ \text{is 74}\text{.95 mi away from}\,R.\\ \ \ \ \ \text{It is in the direction }S\text{ }82{}^\circ 4{7}'\text{ }E\text{ from }R\text{.}\\ \ \ \ \ \end{array}$


13.(b)    If y=x2+2x+3 show that (d2ydx2)3+(dydx)2=4y.
(5 marks)

Show/Hide Solution
$ \displaystyle        y=x2+2x+3       dydx=2x+2       d2ydx2=2     (d2ydx2)3+(dydx)2   =  23+(2x+2)2   =  8+4x2+8x+4   =  4x2+8x+12   =  4(x2+x+3)   =  4y$


14.(a)    The vector OP has a magnitude of 26 units and has the same direction as $ \displaystyle \left( {512
} \right).Thevector \displaystyle \overrightarrow{{OQ}}hasamagnitudeof \displaystyle 20unitsandhasthesamedirectionas \displaystyle \left( {34
} \right).Findthemagnitudeof \displaystyle PQ.$
(5 marks)

Show/Hide Solution
$ \displaystyle        Let a=(512).     |a|=(5)2+122=169=13     ˆa =a|a|=113(512)      OP has magnitude 26 units and the same direction as a.     OP=26ˆa=26×113(512)=(1024)       Let b=(34).     |b|=32+42=25=5     ˆb =b|b|=15(34)      OQ has magnitude 20 units and the same direction as b.     OQ=20ˆb=20×15(34)=(1216)     PQ=OQOP=(1216)(1024)=(228)     |PQ|=222+(8)2=548=2137 units.$


14.(b)    Find the stationary points of the curve y=x2(3x) and determine their natures.
(5 marks)

Show/Hide Solution
$ \displaystyle      y=x2(3x)   y=3x2x3     dydx=6x3x2=3x(2x)     dydx=0 when 3x(2x)=0    x=0 (or) x=2     When x=0,y=0.     When x=2,y=22(32)=4.   The stationary points are (0,0) and (2,4).     d2ydx2=66x=6(1x)     When x=0,d2ydx2=6(10)=6>0   (0,0) is a minimum turning point.     When x=2,d2ydx2=6(12)=6<0   (2,4) is a maximum turning point.$



စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post