The second, third and fourth terms in the expansion of (a + b)n are 12, 60 and 160 respectively. Find the values of a, b and n.
(a+b)n=nC0an+nC1an−1b+nC2an−2b2+nC3an−3b3+...=an+nan−1b+n(n−1)1×2an−2b2+n(n−1)(n−2)1×2×3an−3b3+...
By the problem,
nan−1b=12−−−−−−−−−(1)n(n−1)1×2an−2b2=60−−−−−−(2)n(n−1)(n−2)1×2×3an−3b3=160−−−(3)
By the problem,
nan−1b=12−−−−−−−−−(1)n(n−1)1×2an−2b2=60−−−−−−(2)n(n−1)(n−2)1×2×3an−3b3=160−−−(3)
Dividing equation (2) by equation (1),
n(n−1)2an−2b2nan−1b=5
which yields
ba=10n−1−−−−−−(4)
Again, equation (3) is divided by equation (2),
n(n−1)(n−2)6an−−3b3n(n−1)2an−−2b2=16060
yields
ba=8n−2−−−−−−(5)
Hence by equation (4) and (5),
10n−1=8n−2
Solving the equation, we get n=6
Substituting n = 6 in equation (4) or (5), we get
ba=2⇒b=2a
But we have ..nan−1b=12
(6)a6−1(2a)=12
Hence a6=1⇒a=±1
So, when a=−1,b=−2
and when a=−1,b=−2
.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!