Processing math: 100%

Problem Study (The Binomial Theorem)

The second, third and fourth terms in the expansion of (a + b)n are 12, 60 and 160 respectively. Find the values of a, b and n.
(a+b)n=nC0an+nC1an1b+nC2an2b2+nC3an3b3+...=an+nan1b+n(n1)1×2an2b2+n(n1)(n2)1×2×3an3b3+...

By the problem,
nan1b=12(1)n(n1)1×2an2b2=60(2)n(n1)(n2)1×2×3an3b3=160(3)

Dividing equation (2) by equation (1), 
n(n1)2an2b2nan1b=5
which yields 
ba=10n1(4)
Again, equation (3) is divided by equation (2),
n(n1)(n2)6an3b3n(n1)2an2b2=16060
yields
ba=8n2(5)
Hence by equation (4) and (5),
10n1=8n2
Solving the equation, we get    n=6
Substituting n = 6  in equation (4) or (5), we get
ba=2b=2a
But we have ..nan1b=12
(6)a61(2a)=12
Hence a6=1a=±1
So, when a=1,b=2
and when a=1,b=2
.

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post