Solve the following equations for 0° ≤ x ≤ 360°.
(a) 2sinxcosx=sinx
Show/Hide Solution
2sinxcosx−sinx=0
sinx(2cosx−1)=0
sinx=0 (or) cosx=12
(i) For sinx=0, x=0∘ (or) x=180∘ (or) x=360∘
(ii) For cosx=12,
x=60∘ (or) x=360∘−60∘ x=60∘ (or) x=300∘
sinx(2cosx−1)=0
sinx=0 (or) cosx=12
(i) For sinx=0, x=0∘ (or) x=180∘ (or) x=360∘
(ii) For cosx=12,
x=60∘ (or) x=360∘−60∘ x=60∘ (or) x=300∘
(b) 3tanxsinx=2tanx
Show/Hide Solution
3tanxsinx−2tanx=0 tanx(3sinx−2)=0 tanx=0 (or) sinx=23(i) For tanx=0, x=0∘ (or) x=180∘ (or) x=360∘(ii) For sinx=23=0.6667, x=41∘49′ (or) x=180∘−41∘49′∘ x=41∘49′ (or) x=138∘11′
(c) 3 sin2x=4sinx
Show/Hide Solution
3sin2x−4sinx=0 sinx(3sinx−4)=0 sinx=0 (or) sinx=43(i) For sinx=0, x=0∘ (or) x=180∘ (or) x=360∘(ii) For sinx=43=1.333 Since −1≤sinx≤1, sin x=43 is impossible.
(d) 5sinxcosx=2cosx
Show/Hide Solution
5sinxcosx−2cosx=0 cosx(5sinx−2)=0 cosx=0 (or) sinx=25(i) For cosx=0, x=90∘ (or) x=270∘ (ii) For sinx=25=0.4 x=23∘35′ (or) x=180∘−23∘35′
(e) cos2x−cosx=2
Show/Hide Solution
cos2x−cosx−2=0 (cosx+1)(cosx−2)=0 cosx=−1 (or) cosx=2(i) For cosx=−1, x=180∘ (ii) For cosx=2 Since −1≤cosx≤1, cosx=2 is not in domain.∴ x=180∘ is the only solution.
(f) 2sinxcosx−cosx=0
Show/Hide Solution
cosx(2sinx−1)=0 cosx=0 (or) sinx=12(i) For cosx=0, x=90∘ (or) x=270∘(ii) For sinx=12 x=30∘ (or) x=180∘−30∘ x=30∘ (or) x=150∘
(g) 2sin2x−sinx=1
Show/Hide Solution
2sin2x−sinx−1=0 (2sinx+1)(sinx−1)=0 sinx=−12 (or) sinx=1(i) For sinx=−12, x=180∘+30∘ (or) x=360∘−30∘ x=210∘ (or) x=330∘(ii) For sinx=1 x=90∘
(h) 2sinxcosx=√3cosx
Show/Hide Solution
2sinxcosx−√3cosx=0 cosx(2sinx−√3)=0 cosx=0 (or) sinx=√32(i) For cosx=0, x=90∘ (or) x=270∘(ii) For sinx=√32 x=60∘ (or) x=180∘−60∘ x=60∘ (or) x=120∘
(i) 2sinxcosx−cosx+4sinx−2=0
Show/Hide Solution
cosx(2sinx−1)+2(2sinx−1)=0 (2sinx−1)(cosx+2)=0 sinx=12 (or) cosx=−2(i) For sinx=12, x=30∘ (or) x=180∘−30∘ x=30∘ (or) x=150∘(ii) For cosx=−2, Since −1≤cosx≤1, cosx=−2is out of domain and hence cosx=−2 has no solution.
(j) 8cos2x−2cosx−5=secx
Show/Hide Solution
8cos2x−2cosx−5=1cosx 8cos3x−2cos2x−5cosx=1 8cos3x−2cos2x−5cosx−1=0 (2cosx+1)(4cosx+1)(x−1)=0 [using factor theorem]∴ cosx=−12 (or) cosx=−14 (or) cosx=1(i) For cosx=−12, x=180∘−60∘(or) x=180∘+60∘ x=120∘ (or) x=240∘(ii) For cosx=−14=0.25, x=180∘−14∘29′ (or) x=180∘+14∘29′ x=165∘31′ (or) x=194∘29′(iii) For cosx=0, x=90∘(or) x=270∘
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!