ကိန္းရွင္(variable) တစ္ခုရဲ့ ထပ္ကိန္းမ်ား ပါ၀င္တဲ့ ကိန္းတန္း တစ္ခု (တနည္းေျပာရင္ function တစ္ခု) ကို polynomial လို႔ေခၚပါတယ္။ x ပါ၀င္တဲ့ ကိန္းတန္းတစ္ခုကို f(x),g(x), h(x),Q(x) စသည္ျဖင့္ သတ္မွတ္ႏိုင္ပါတယ္။ ဥပမာ ကိန္းတန္းမ်ားကို ၾကည့္ပါ။
Remainder Theorem ဆိုတာက Polynomial of any order ကို polynomial of order 1 နဲ႔ စားတဲ့အခါ ရလာမယ့္ remainder (အၾကြင္း) ကို ရွာယူမွာ ျဖစ္ပါတယ္။
Remainder Theorem
If the polynomial f(x) is divided by (x-k) where k is a constant, the remainder is f(k).
f(x)÷ (x-k)=>Remainder=f(k))
Proof: Let Q(x) be the quotient and R be the remainder when f(x) is divided by (x-k).
Therefore f(x) = Q(x) (x-k) + R
f(k) = Q(k) (k-k) + R
f(k) = 0 +R and
f(k) = R.
Therefore the remainder theorem is satisfied.
Note:
Q(x) = quotient = စားလဒ္
f(x) = dividend = တည္ကိန္း
(x-k) = divisor = စားကိန္း (သို႔) စားေျခ
Dividend
Divisor= Quotient + Remainder
Divisor
Extension of Remainder Theorem
f(x)÷(x+k) => Remainder = f(-k)
f(x)÷(ax-b) => Remainder = f(b/a)
f(x)÷(ax+b) => Remainder = f(-b/a)
f(x)÷(p-qx) => Remainder = f(p/q)
f(x)÷(p+qx) => Remainder = f(-p/q)
f(x)÷ax => Remainder = f(0)
f(x)÷x => Remainder = f(0)
Example 3
Find the remainder when x3 + 4x2 - 7x + 6 is divided by x - 1.
Let f(x) = x3 + 4x2 - 7x + 6
f(1) = 13 + 4 (1)2 - 7 + 6
= 4